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ABSTRACT
Recommendation systems can help users process large amounts
of information, and generative adversarial networks (GANs) show
great potential in recommendation systems. In this paper, we pro-
pose a new GAN model to enhance the information flow within the
generator based on the information flow between the original gen-
erator and discriminator. Our experimental results indicate that our
model reduces the discrepancy between the generator and the dis-
criminator. Both the generator and discriminator yield considerable
performance improvements compared to other strong baselines.
The improvements by NDCG@3 and MRR are significant, which
can reach 30.98% and 30.17%, respectively.

CCS CONCEPTS
• Information systems → Collaborative filtering.
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Generative adversarial networks, Recommendation system, Infor-
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1 INTRODUCTION
A typical recommendation system contains two roles, namely, users
and items. A recommendation system calculates the user’s pref-
erences for items and provides preferred items for users. Some
recommendation models have achieved good results. For example,
the BPR model [17] is used to form BPR-Opt, which is derived
from the maximum posterior estimator for optimal personalized
rankings. NCF [13] combines matrix factorization and a multilayer
perceptron, which extracts features from both low dimensions and
high dimensions, thus achieving good recommendation results.

The framework of a GAN model can be divided into two parts:
the generator and the discriminator. The generator constantly fits
the real data distribution and generates fake data to deceive the dis-
criminator. The discriminator learns to distinguish fake data from
real data through the generator’s repeated adversarial training
[1, 3, 9–11, 16]. Considering recent development of recommenders
and GANs, researchers have applied GANs to recommendation
systems. Due to the particularity of a recommendation system, the
generator does not generate new things as usual, but rather it pro-
cesses an information flow in the form of generating hard negative
samples. The generator does not generate new things, but rather it
samples existing items for the discriminator [2, 15, 18, 22, 24]. Re-
cently, the popularity of applying GANs to recommender systems
has improved. The PDGAN [22] was proposed to better capture
users’ personal preferences for both individual items and the di-
versity of a set of items. The IRGAN [20] is applied to multiple
semisupervised IR tasks and can properly handle implicit feedback.
IRGAN for recommender implements classical collaborative filter-
ing as one of the uncluttered scoring functions for user preferences.
However, due to the nonequivalence of the training results between
the generator and discriminator, the degree of improvement ob-
tained by the generator is much lower than that of the discriminator.
To more effective train the model, our research aims to avoid the
initial random sampling process in the generator. We propose the
concept of the info-flow as all information interactions that exist in
the following: (1) the interior information flow of the generator and
(2) the information flow between the generator and discriminator.
These two information flows are hereinafter referred to as the inner
info-flow and the outer info-flow. We add the inner info-flow to
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remedy the flaws caused by the existence of only the outer info-flow.
The process of the inner info-flow can be analogized to the process
of the blood flow among organs in the human body below.

The general process of the external information flow is that the
generator generates hard pairs for the discriminator to train, and
the discriminator takes the reward loss to the generator. In this
case, due to the discrepancy in the performances of the generator
and the discriminator, a poor sample may occur [21]. Similar to the
abovementioned process, in the human body, the heart receives
blood from the veins and delivers blood to other organs in the body
through muscle contractions. If the heart’s blood supply capacity
is not balanced with the blood required by the organs in the body
(e.g., insufficient blood supply caused by vigorous exercise), which
is similar to the problem of the discrepancy between the generator
and the discriminator, then the heart is no longer able to take on
this heavy work, like the performance flaw that occurs for the gen-
erator. As a result, various problems will emerge. What the blood
flow process among organs tells us is that if we install a pacemaker
inside the heart to help the heart supply sufficient blood through
the stimulation of electrical pulses, this symptom can be greatly
relieved, and thus the human body functions normally. Hence, sim-
ilarly, we make improvements inside the generator to enhance the
info-flow within the generator (inner info-flow), thereby stimulat-
ing the generator to sample more difficult examples. Consequently,
both the generator and discriminator will be better trained.

In order to make the generator better capture the connections
between users and items, we pretrained the network on a dataset
and constructed a 54-dimensional feature vector that represents
the connections between one user and all items to focus on the con-
nections between users and items. In other words, each dimension
of the 54-dimensional feature vector can be regarded as 𝑢’s scoring
of 𝑖 . Then, the training after inputting the 54-dimensional feature
vector into the adversarial network is similar to a learning-to-rank
system, and the loss function is also consistent with the learning-
to-rank paradigm. These features are input to the generator, which
greatly improves the generator. This process can be understood as
extending the structure of the GAN to enhance the inner info-flow
process within the generator.

2 THE PROPOSED MODEL
2.1 Model overview
We divide the generator into two parts, namely, the level one gener-
ator and level two generator. Specifically, we add LambdaRank [4, 5]
to the level one generator as the input of the GAN to determine
the sampling possibility of examples, thus determining the waiting
list of examples in the inner info-flow. We obtain this intermediate
waiting list before the sampling process to sample examples di-
rectly. The superiority of this method is that by selecting examples
scored by LambdaRank, the probability that difficult examples are
discriminated will be improved by the discriminator.

Level one generator: 𝑔𝜆𝑝𝑟𝑜𝑏 ( 𝑗 |𝑢, 𝑟 ) tries to fit the underlying
relevance distribution and generates the item given a relevant score
and a user. In other words, level one generator not only aims to
improve its own performance, but it also continuously selects hard
negative samples for the level two Generator.

Level two generator:𝑔𝜃𝑝𝑟𝑜𝑏 (𝑖 |𝑢, 𝑟 ) not onlymodels 𝑝𝑡𝑟𝑢𝑒 (𝑖 |𝑢𝑛, 𝑟 )
to generate samples for the discriminator, but also learns a discrimi-
native score for each user-item pair to give direct feedback to itself.
For the level one generator, the level two generator acts as both a
student and a mate: as a student, it receives batches of hard samples
to train; as a mate, it constantly gives feedback to the level one
generator in the form of gradients. As a result, both generators
more efficiently explore the gradient space in collaboration. Mean-
while, for the discriminator, the level two generator acts as both
a competitor and partner: as a competitor, it constantly generates
hard pairs for the discriminator to train; as a partner, it obtains the
response from the competitor and guides its training.

In summary, the generator is trained to fit the scoring functions
𝑔𝜆𝑠𝑐𝑜𝑟𝑒 (𝑖, 𝑢) and 𝑔𝜃𝑠𝑐𝑜𝑟𝑒 (𝑖, 𝑢) and generate the generative probabil-
ities 𝑔𝜆𝑠𝑐𝑜𝑟𝑒 (𝑖, 𝑢) and 𝑔𝜃𝑠𝑐𝑜𝑟𝑒 (𝑖, 𝑢), respectively. The generator not
only aims to improve its own performance, but it also continuously
selects hard negative samples for itself. In this setting, generator 𝐺
acts as an information hub, allowing generative information to be
passed forth to the inner info-flow and discriminative information
to be passed back to the outer info-flow. The discriminator is trained
to fit the score function 𝑑Φ𝑠𝑐𝑜𝑟𝑒 (𝑖, 𝑢), and constantly discriminate
the hard samples from the generator to improve its performance.

2.2 Overall objective
We apply adversarial losses for the generator-discriminator info-
flow (outer info-flow). We improve the performance of discrimi-
nator 𝐷 by maximizing the cross-entropy loss and train the true
samples to 1 and the fake (negative) samples to 0. The negative sam-
ples are sampled by the generator, which estimates the generative
probability 𝑝𝜃 (𝑖 |𝑢𝑛, 𝑟 ). Our objective is as follows:

𝐽𝐺
∗,𝐷∗

=𝑚𝑖𝑛
𝜃
𝑚𝑎𝑥
𝜙

𝑁∑
𝑛=1

(𝐸𝑖∼𝑝𝑡𝑟𝑢𝑒 (𝑖 |𝑢𝑛 ,𝑟 ) ) [𝑙𝑜𝑔𝐷 (𝑖 |𝑢𝑛) ]

+ 𝐸𝑖∼𝑝𝜃 (𝑖 |𝑢𝑛 ,𝑟 ) ) [𝑙𝑜𝑔 (1 −𝐷 (𝑖 |𝑢𝑛)) ]
(1)

For inner Info-flow, the generator estimates the generative prob-
ability 𝑝𝜆 (𝑖 |𝑢𝑛, 𝑟 ) so that it can sample negative samples for itself.
We improve the performance of the generator G by maximizing the
cross-entropy loss, train the true samples to 1 and the fake(negative)
samples to 0. We design our objective as follow:

𝐽𝐺
∗
=𝑚𝑖𝑛

𝜆
𝑚𝑎𝑥
𝜃

𝑁∑
𝑛=1

(𝐸𝑖∼𝑝𝑡𝑟𝑢𝑒 (𝑖 |𝑢𝑛 ,𝑟 ) ) [𝑙𝑜𝑔𝐺 (𝑖 |𝑢𝑛) ]

+ 𝐸𝑖∼𝑝𝜆 (𝑖 |𝑢𝑛 ,𝑟 ) ) [𝑙𝑜𝑔 (1 −𝐺 (𝑖 |𝑢𝑛)) ]
(2)

2.3 Training discriminator
The discriminator is trained to fit the scoring function𝐷Φ𝑠𝑐𝑜𝑟𝑒 (𝑖, 𝑢).
The objective of the discriminator is to maximize the sampled fake
positive items and minimize the log likelihood prediction.

𝜙∗ =𝑚𝑎𝑥
𝜙

𝑁∑
𝑛=1

(𝐸𝑖∼𝑝𝑡𝑟𝑢𝑒 (𝑖 |𝑢𝑛 ,𝑟 ) ) [𝑙𝑜𝑔𝐷 (𝑖 |𝑢𝑛) ]

+ 𝐸𝑖∼𝑃𝜃 (𝑖 |𝑢𝑛 ,𝑟 ) ) [𝑙𝑜𝑔 (1 −𝐷 (𝑖 |𝑢𝑛)) ]
(3)

where 𝑝𝑡𝑟𝑢𝑒 (𝑖 |𝑢𝑛, 𝑟 ) is the underlying relevance distribution, which
shows the true probability. 𝑝𝜃 (𝑖 |𝑢𝑛, 𝑟 ) is the estimated generation
probability that is produced by the generator. Through the interac-
tion of these parameters, 𝜙 can be made more reasonable and better.
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We use the RankNet [6] model as the discriminator and pair loss as
its loss function. The input of the function is a pair of items [5, 7]:

𝑃𝑎𝑖𝑟𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑔𝐷 (𝑖 |𝑢𝑛) =
𝐾∑
𝑛=1

𝑙𝑜𝑔𝜎 (𝑓𝜙 (𝑝𝑜𝑠𝑛) − 𝑓𝜎 (𝑛𝑒𝑔𝑛)) (4)

The negative items are sampled from 𝑝𝜃 (𝑖 |𝑢𝑛, 𝑟 ) by the level
two generator, and the level one generator learns from 𝑝𝜆 (𝑖 |𝑢𝑛, 𝑟 ).
𝑝𝜆 (𝑖 |𝑢𝑛, 𝑟 ) is learned by the level one generator from the raw data.

2.4 Training Generator
Level one GeneratorWe use the LambdaRank model as level one
Generator to help the level two Generator. By minimizing lambda
loss and generating NDCG probability 𝑔𝜆𝑝𝑟𝑜𝑏 (𝑖 |𝑢, 𝑟 ), the level one
Generator is trained to fit the score function 𝑔𝜆𝑠𝑐𝑜𝑟𝑒 (𝑖, 𝑢).

For the discontinuity of the sampling, we further deduce the
formula and approximate the gradient. For simplicity, we express
𝐸𝑖∼𝑃𝜆 (𝑖 |𝑢𝑛,𝑟 ) ) [𝑙𝑜𝑔(1 − 𝐷 (𝑖 |𝑢𝑛))] as 𝐽𝐺𝜆 (𝑢𝑛). Due to the fact that
our neural network is a nonconvex function, we use the gradient
descent method to obtain the maximum point. Although it is diffi-
cult to calculate the gradient of 𝐽𝐺𝜆 (𝑢𝑛), the strategy gradient is
applied to obtain an approximate gradient:

𝜆∗ =𝑎𝑟𝑔𝑚𝑎𝑥
𝜆

𝑁∑
𝑛=1

(𝐸𝑖∼𝑝𝜆 (𝑖 |𝑢𝑛 ,𝑟 ) ) [𝑙𝑜𝑔 (1 −𝐺𝜆 (𝑖 |𝑢𝑛) ]

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝜆

𝑁∑
𝑛=1

𝐽𝐺𝜆 (𝑢𝑛)

(5)

Δ𝜆 𝐽
𝐺𝜆 (𝑢𝑛) = Δ𝜆𝐸𝑖∼𝑝𝜆 (𝑖 |𝑢𝑛 ,𝑟 ) ) [𝑙𝑜𝑔 (1 −𝐺𝜆 (𝑖 |𝑢𝑛) ]

= 𝐸𝑖∼𝑝𝜆 (𝑖 |𝑢𝑛 ,𝑟 ) ) [Δ𝜆𝑙𝑜𝑔𝑝𝜆 (𝑖 |𝑢𝑛, 𝑟 )𝑙𝑜𝑔 (1 −𝐺𝜃 (𝑖 |𝑢𝑛) ]

≈ 1
𝐾

𝐾∑
𝑖=1

Δ𝜆 [𝑙𝑜𝑔𝑝𝜆 (𝑖 |𝑢𝑛, 𝑟 )︸            ︷︷            ︸
𝐿𝑖𝑠𝑡𝑙𝑜𝑠𝑠

𝑙𝑜𝑔 (1 −𝐺𝜃 (𝑖 |𝑢𝑛)) ]︸                    ︷︷                    ︸
𝑅𝑒𝑤𝑎𝑟𝑑

(6)

The core idea of the equation is to transform the gradient of
expectation to the expectation of gradient. In the above formula, K
represents the item number of a specific user.

𝜆 = 𝑁 ( 1
1 + 𝑒𝑠𝑖−𝑠 𝑗 ) (2

𝑖 − 2𝑗 ) ( 1
𝑙𝑛 (1 + 𝑖) − 1

𝑙𝑛 (1 + 𝑗) ) (7)

where 𝑁 is the reciprocal max 𝐷𝐶𝐺 for the user. All 𝜆 functions
were designed with the 𝑁𝐷𝐶𝐺 cost function.

Level two Generator. Level two generator uses the fitting scor-
ing function𝑔𝜃𝑠𝑐𝑜𝑟𝑒 (𝑖, 𝑢) and generates the probability𝑔𝜃𝑝𝑟𝑜𝑏 (𝑖 |𝑢, 𝑟 ).
It receives a batch of hard samples from the level one generator,
and provides false samples for the discriminator to cheat the dis-
criminator. Having noticed that the conventional generator often
times provides unsatisfactory results, we add a level one generator
inside the generator to make it perform better.

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜃

𝑁∑
𝑛=1

(𝐸𝑖∼𝑝𝜃 (𝑖 |𝑢𝑛 ,𝑟 ) ) [𝑙𝑜𝑔 (1 −𝐷 (𝑖 |𝑢𝑛) ])

≈ 𝑎𝑟𝑔𝑚𝑎𝑥
𝜃

𝑁∑
𝑛=1

1
𝐾

𝐾∑
𝑛=1

[Δ𝜃 𝑙𝑜𝑔𝑝𝜃 (𝑖 |𝑢,𝑟 )︸        ︷︷        ︸
𝑃𝑜𝑖𝑛𝑡𝑙𝑜𝑠𝑠

𝑙𝑜𝑔 (1 −𝐷 (𝑖 |𝑢𝑛)) ]︸                  ︷︷                  ︸
𝑅𝑒𝑤𝑎𝑟𝑑

(8)

where𝑝𝑡𝑟𝑢𝑒 (𝑖 |𝑢𝑛, 𝑟 ) is the underlying relevance distribution, namely,
the true probability. 𝑝𝜆 (𝑖 |𝑢𝑛, 𝑟 ) is the estimated generation proba-
bility by level one Generator. Through the info-flow of generators,

Figure 1: The workflow of the IFGAN.

we achieve the optimal parameter 𝜃 , thus improving the effect of
Generator. Here is the definition of the 𝐺 function.

𝑃𝑜𝑖𝑛𝑡𝑙𝑜𝑠𝑠 =

𝐾∑
𝑛=1

𝑙𝑜𝑔𝜎 (𝑓𝜃 (𝑖𝑡𝑒𝑚𝑛)) (9)

By modifying the traditional generator, the conventional generator
is divided into the level one generator and the level two generator.

2.5 Workflow
Figure 1 shows the total workflow of our model. The level one
generator teaches the hard items to the level two generator, and
the level-two generator gives a feedback reward to the level one
generator, which is directly multiplied by the list loss.The level
two generator generates hard pairs to the discriminator, and the
discriminator gives a discriminative reward to the level two gen-
erator, which is directly multiplied by the point loss.In order to
better show the algorithm flow, The following algorithm shows the
overall training process.

3 EXPERIMENTS
3.1 Experimental Setting
Dataset We conducted experiments with the MovieLens (100k)
dataset. The MovieLens dataset consists of user ratings for movies
(1 to 5). It contains 943 users, 1683 items, and 18 explicit categories;
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Table 1: Experimental results on the Movielens dataset.

Model R@5 R@10 MAP N@3 N@5 N@10 MRR
BPR 0.1181 0.1936 0.2376 0.4078 0.3889 0.3632 0.5952
CDAE 0.0708 0.1128 0.1374 0.2169 0.2115 0.2047 0.3923
NCF 0.1284 0.2066 0.2527 0.4458 0.4183 0.3912 0.6229
CML 0.1435 0.2324 0.2813 0.4797 0.4508 0.4198 0.6612
IRGAN - - 0.2418 0.4222 0.4009 0.3723 0.6082
LRML 0.0906 0.1473 0.1724 0.3040 0.2820 0.2639 0.4967

CF-GAN 0.152 - - 0.4760 - -
LightGCN 0.1569 0.2305 0.2833 0.4582 0.4329 0.3701 0.6403
IFGAN 0.1658 0.2407 0.2895 0.6283 0.4928 0.4241 0.8607
Improve 5.67% 3.57% 2.19% 30.98% 9.32% 1.02% 30.17%

eachmovie belongs to multiple categories.We consider the 5 ratings
of the MovieLens dataset as positive feedback.

Implementation The input data are pretrained into an equal
dimension feature vector, and fed into a two-layer neural network.
The first linear layer is activated by a tanh function. The second
layer is activated by the sigmoid function. The generative proba-
bility 𝑝𝑟𝑜𝑏 (𝑖 |𝑢, 𝑟 ) on modeling the data distribution is calculated
by the softmax function. We set the optimizer of the generator as
the stochastic gradient descent with learning rate 1e-6, set the opti-
mizer of the generator and discriminator as Adam with learning
rate 1e-5, betas of (0.9, 0.999) and no weight decay.

Baselines and MetricsWe compare our model with the follow-
ing baselines: BPR [17], CDAE [23], NCF [13], CML [14], IRGAN
[20], LRML [19], CFGAN [8], LightGCN [12]. These baselines ex-
plore the information flow between user and item more or less.

We use multiple measures to evaluate the methods: Ranker Preci-
sion metrics (R@5 R@10, MAP, MRR), Normalized Discounted Cu-
mulative Gain (NDCG@3, NDCG@5, NDCG@10, short for N@k),
which are widely used metrics in evaluation.

3.2 Experimental Result
We report the experimental results in Table 2. Our model outper-
forms the baseline by approximately 5.69% and 13.77% by the aver-
age performance of precision and the NDCG, respectively. More-
over, considering that the quality of the top-ranked items is im-
portant in real-world scenarios, the maximum improvement of
NDCG@3 is significant, and it reaches up to 30.98%. Other metrics
are also improved.

3.3 Ablation experiment
In order to further verify the effectiveness of the info-flow pro-
posed in this article, we conducted two ablation experiments. The
first ablation experiment only uses LambdaRank, and the second
ablation experiment uses an adversarial network without the inner
info-flow (IFGAN-outer), which means that generator 2 is removed.

Table 2 compares the best results of the NDCG indicators of the
two ablation experimental models and the original model to verify
the effectiveness of the original IFGAN model. Figure 2 compares
the performance of the discriminator in the training process of
ablation experimental model 2 and the original model. Obviously,
generator 1 can effectively help the negative sampling process of
generator 2 because the performance gap in the discriminators of
the two models is relatively obvious. The results of the ablation

Table 2: Results of ablation experiments.

Model NDCG@3 NDCG@5 NDCG@10
LambdaRank 0.2241 0.2028 0.1935
IFGAN-outer 0.4512 0.4260 0.3774

IFGAN 0.6283 0.4928 0.4241
Improvement 39.25% 15.68% 12.37%

Figure 2: Algorithm: IFGAN

experiment further verify the effect of inner info-flow on the overall
performance. In addition, in the observation of the discriminator,
we also found a similar conclusion. In fact, the two info-flows
can greatly improve the performance of the generator2. During
the interactive training process between the generator2 and the
discriminator, the discriminator receives the sample pairs from
the second generator, and the reward of its own feedback is more
accurate, which further promotes the overall training process.

4 CONCLUSION
In this paper, we proposed a novel GAN framework to enhance the
adversarial network by adding two types of info-flow processes. The
key feature of our model is that its two-level generator networks
work for two types of information flows and play discriminative
and generative roles. Our proposed model takes advantage of the
insightful inner info-flow, LambdaRank, which gives more reason-
able sampling. We use a pairwise model, RankNet, which plays an
important role in the outer info-flow. We conducted experiments on
the MovieLens dataset and validated the effectiveness of our model.
Our work encourages additional research on recommendation sys-
tems with GANs. We will also exploit ways to apply our method to
other research fields, such as term ranking in query expansion.
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